Artikel pedia
| Home | Kontakt | Artikel einreichen | Oberseite 50 artikel | Oberseite 50 autors
 
 


Artikel kategorien
Letztes fugte hinzu
    Facharbeit peru - entwicklungsland

   Schulsystem in großbritannien

   Antarktis

   Exogene kräfte

   Niederlande

   Australien

   Zusammenfassung tsunami + entstehung von erdbeben

   Plattentektonik (alfred wegener), vulkanismus, erdbeben

   Metropolisierung und marginalisierung am fallbeispiel lima

   Stundenprotokoll zum thema passatzirkulation

   Auswertung eines klimadiagramms

   Wasserkreislauf und nährstoffkreislauf

   Der tourismus in den tropischen entwicklungsländern

   Treibhauseffekt

   Entstehung der mittelgebirge am beispiel des erzgebierges
alle kategorien

  Versuch einer technikfolgenabschätzung zur

Alternativenergiegewinnung 1. Kernfusion 2 1.1 Die Entwicklung der Fusionsforschung 2 1.2 Internationale Forschungsprogramme 2 1.3 Aspekte der Kernfusion 5 1.4 Abschluß Kernfusion 9 Fachbegriffe zur Kernfusion 10   2.

Windenergie 11 2.1 Das Windenergiepotential 11 2.2 Meteorologische Voraussetzungen 11 2.3 Schlußfolgerungen und Empfehlungen 12 2.4 Netzgekoppelte WKA´s in Österreich 13   3. Photovoltaik 14 3.

1 Kostensituation 14 3.2 Stromertrag und Energiebilanzen 15 3.3 Photovoltaik-Einspeisetarife 15 3.4 Ausblick 16   4. Energieträger Wasserstoff 17 4.1 Der Stoff, aus dem die Träume sind 18 4.

2 Brennstoff aus dem Bakterienreaktor 19 4.3 Wasserstoff aus Traubenzucker 21 4.4 Vom Himmel über der Wüste 21 4.5 Der Preis für Wasserstoff 21 4.6 Gas gegeben: Saubere Kraft aus Isoliertanks 22 4.7 Daimler-Benz: Pkw mit Brennstoffzelle 22 4.

8 Wasserstoffbus nimmt Fahrt auf 24 Kernfusion Die Entwicklung der Fusionsforschung Die Fusionsforschung begann gleich nach dem II. Weltkrieg mit viel Optimismus, denn es herrschte vor allem in Amerika der Glaube, daß man die Kernfusion mit einem ähnlich großen materiellen Aufwand wie im Manhattan Projekt entwickeln und zur Serienreife bringen könnte. Die ersten Anstrengungen wurden unabhängig voneinander und unter strenger Geheimhaltung in den USA, der UdSSR und GB betrieben. Da die grundlegenden Probleme unterschätzt wurden kam es zur Aufhebung der Geheimhaltung zugunsten internationaler Zusammenarbeit und Neuorientierung der Strategie: nicht mehr die Konstruktion eines Reaktors, sondern Probleme der Plasmaphysik standen für die kommenden zehn Jahre mehr im Vordergrund der Forschung. Die Fusionsforschung ist aus der Forschung an der Wasserstoffbombe hervorgegangen. Die Wasserstoffbombe stellt den Beweis der Möglichkeit der Kernfusion dar, jedoch ist diese Fusionsreaktion unkontrolliert.

Direkter Nachfolger, zunächst streng geheimgehalten, war die laserinduzierte Trägheitsfusion. Mit Hilfe der Pellets sollte die Explosion der Wasserstoffbombe im kleinen simuliert werden. Dies und auch die starken Laser, die mit dieser Technik verbunden sind, bilden mögliche Grundlagen für SDI. Die Forschungen an der Laserfusion wurden jedoch schließlich der zivilen Fachwelt geöffnet und dem zivilen Ziel der Energieforschung unterstellt. Jedoch hing diesem Projekt immer der militärische Aspekt an, mit dem sich viele Forscher nicht in Verbindung sehen wollten. So begann man nach anderen Wegen der Energieerzeugung durch Kernfusion zu forschen.

Anfang der Fünfziger Jahre hatte die Sowjetunion bereits erste Tokamak-Programme gestartet. Schon früh kam es hier zu einem Gedankenaustausch unter den Nationen. Japan und USA wie auch die europäischen Staaten begannen Fusionsprogramme im Bereich des magnetischen Einschlusses. Die Forschungsergebnisse veranlaßten die Beteiligten zu ersten Prognosen über die Realisierung der Kernfusion. So sagte 1955 der Präsident der Genfer "Atoms for Peace" Konferenz, daß die Fusionsforschung 20 Jahre zur Lösung der Probleme brauchen würde. Daß dieser Zeitraum eindeutig zu kurz gewählt war, zeigte sich schon bald.

Diverse Experimente in den verschiedenen Bereichen des magnetischen Einschlusses sowie der Laserinduzierten Fusion ergaben neue Probleme und damit eine Revision der Prognosen: 1978 stellt man fest, daß die in den Experimenten erreichten Plasmaparameter innerhalb von Fünf Jahren um den Faktor zehn gesteigert werden konnten, was bedeuten würde, daß der "Breakeven", als der Punkt mit ausgeglichener Energiebilanz 1981 - 82 zu erreichen sei und daß noch deutlich vor 2030 die Fusionsreaktoren einen nennenswerten Anteil an der Energieversorgung nehmen würden. Am 1.6.1978 wird die JET-Gruppe gegründet, die die Entwicklung, den Bau und die Forschung für das auf 12 Jahre ausgelegte JET-Projekt übernehmen sollte. Am 25.6.

1983 wird das erste Experiment im JET durchgeführt. Ziel des Projektes soll in einer späteren Ausbauversion des JET ein Brennzyklus von 20 s sein. Etwa zur gleichen Zeit wie JET, teilweise einige Jahre später, teilweise früher laufen Projekte der UdSSR, Amerikaner und Japaner mit Namen T-15, TFTR und JT-60 an, die in der Größenordnung von JET liegen und ähnlich nahe dem Lawson Kriterium kommen, jenem Punkt, an dem thermonuleares Brennen einsetzt. Die Zielsetzungen der Projekte sind geringfügig unterschiedlich, gemeinsames Ziel ist es jedoch, zu thermonuklearem Brennen in Zeiten bis zu 100 s zu gelangen. Bei allen Projekten handelt es sich um Tokamaks. Seltsamerweise erst Ende der 80er Jahre beginnen Forschungen zur Sicherheit der Tokamaks.


TESPE, ein Projekt der Kernforschungsanlage Karlsruhe (KfK), stellt ein verkleinertes Modell für einen Fusionsreaktor dar und ist neben Experimenten zu Wandmaterialien auch um die Erforschung von Störfällen bemüht, unter anderem bezüglich der "Disruption", also dem plötzlichen Zusammenbrechen des Manetfeldes. Die Probleme und Ergebnisse, die die Forscher aus Projekten wie JET ziehen, erzwingen eine erneute Revision der Prognosen bezüglich der ersten Fusionskraftwerke. Erst 2050, also Mitte des nächsten Jahrhunderts, wird die Kernfusion beginnen, einen Marktanteil an der Energieerzeugung zu erlangen. Und noch länger wird es dauern, bis ein nennenswerter Anteil der Energie aus Fusionsreaktoren kommen wird. Nichts desto trotz ist bereits die Planung des nächsten Projektes in Angriff genommen. ITER - der Internationale thermonukleare Experimental-Reaktor wird 1987 ins Leben gerufen.

Er soll der letzte Versuchsreaktor vor Erstellung des DEMO-Reaktors sein. Letzterer soll in ca. 30 Jahren als erster funktionsfähiger und stromerzeugender Reaktor die wirtschaftliche Produktion von Strom mittels Kernfusion demonstrieren. ITER selbst soll ab 1997 gebaut werden, 2004 fertiggestellt sein und 2005 in Betrieb gehen. Seine Leistung soll bereits 1000 MW betragen. Durchgeführt wird dieses Projekt von den USA, GUS, Japan und der EG.

Wissenschaftliche Erkenntnisse von allen Großanlagen der beteiligten Staaten fließen in dieses Projekt.   Internationale Forschungsprogramme Übersicht Es gibt weltweit vier institutionell geführte Zentren der Kernfusionsforschung. Sie sind in ihrer Größe etwa gleich und arbeiten parallel an ähnlichen Forschungsprogrammen. Dem übergeordnet sind drei internationale Expertengruppen (USA, Japan, Deutschland - Jülich), welche einen technologischen Austausch verwirklichen sollen. Die Studiengruppe INTOR, bestehend aus europäischen, japanischen, sowjetischen und amerikanischen Wissenschaftlern erarbeiten im Auftrage der Internationalen Atomenergiebehörde in Wien (IAEA) ein weltweites Gemeinschaftsprojekt (ITER - Internationaler Thermonuklearer Experimenteller Reaktor). Deutschlands Forschung wird weltweit als führend angesehen und hat gute Chancen für eine führende Beteiligung am ITER Projekt, evtl auch Standort für den ITER-Reaktor zu werden.

Europa/Deutschland 1958 wurde in Europa ein gemeinsames Forschungsprogramm EURATOM gegründet. Ziel ist ein Demonstrationsreaktor DEMO (in etwa vierzig Jahren), der die prinzipielle Machbarkeit der Energiegewinnung durch Kernfusion deutlich machen soll. Es gibt zwei gemeinsame Forschungseinrichtungen, die Gemeinsame Forschungsstelle (GFS) und der in Culham aufgestellte Tokamak "Joint European Torus" (JET, Baukosten etwa eine Mrd. DM). Das Nachfolge Projekt, der "Next European Torus" (NET), soll dann letztes Zwischenprojekt zum DEMO sein. Ansonsten sind die Programme auf die einzelnen Mitgliedsstaaten verteilt.

Getragen werden die Forschungen von dem Haushalt der EG und den Haushalten der einzelnen, nationalen Forschungseinrichtungen. Hauptforschungsgegenstand sind magnetische Einschlußkonzepte, alternative Einschlußkonzepte werden nur mit etwa 10% unterstützt. Hauptforschungseinrichtungen in Deutschland sind hauptsächlich das IPP (Institut für Plasma-Physik in Garching mit Tokamak ASDEX, Stellerator Wendelstein), KfK (Kernforschungszentrum Karlsruhe) und das KFA (Kernforschungszentrum in Jülich). Sie sind in dem Europäischen Forschungsprogramm vollständig integriert. KfK und IPP gründeten 1982 eine Entwicklungsgemeinchaft zur Kernfusion. USA Die Kernfusionsforschung in den USA ist organisiert und überwacht von Department of Energy.

Die Programme verteilen sich auf Großversuchseinrichtungen (Hauptteil), Universitäten und einige privat unterstützte Forschungseinrichtungen. Es steht weltweit der größte Etat zur Verfügung. Die Programme sind aber in kurze Abschnitte aufgeteilt, so daß der Etat dynamisch, unstetig vergeben wird. Als Versuchseinrichtungen stehen mehrere kleinere Tokamak-Experimente, ein MIGMA Experiment und ein Tokamak-Reaktor in Princeton (von der Größe mit JET vergleichbar) und Trägheitseinschluß-Versuche (militärisches Interesse) zur Verfügung. GUS Versuchseinrichtungen sind ausschließlich staatlich unterhalten und koordiniert. Schwerpunkt ist hier die Plasmaphysik.

Es wird an Programmen zur Tokamaktechnik (favorisiert) und zum MIGMA gearbeitet. Japan Die japanischen Versucheinrichtungen werden von mehreren Ministierien getragen und von einem übergeordneten, nationalen Gremium (JAERI) koordiniert. Private Firmen unterstützen die Forschungen beträchtlich durch die Entwicklung von benötigten Spezialtechniken (supraleitende Spulen, Vakuumtechnik, Plasmaheizung) Forschungseinrichtungen sind Großanlagen (Tokamak JT-60), diverse Einrichtungen der Universitäten und private Firmen. Es wird parallel an verschiedenen Einschlußverfahren und der Weitereintwicklung der magnetischen, toroidalen Einschlußtechniken gearbeitet.   Diskussion möglicher Technischer Ansätze Übersicht Der Kernfusion liegt eine Reaktion zwischen zwei Wasserstoffisotopen , z.B.

Deuterium und Tritium, zu Grunde: 2H+ + 3H+ © 4He2+ + n0. Bei dieser Reaktion wird, nach dem Gesetz für den Massendefekt von A. Einstein, Energie frei. Um die Verschmelzung der Wasserstoffkerne zu Heliumkernen zu starten, muß das Wasserstoffgas auf eine Temperatur von über 100 Millionen Grad Celcius erhitzt werden (200 Mio. Grad wurden schon erreicht). Zum Vergleich: Die Sonne hat auf ihrer Oberfläche eine Temperatur von 5500 C und in ihrem Innern 15.

000.000 C. Es entsteht dabei ein sogenanntes Plasma, ein Gemisch aus freien Wasserstoffionen und freien Elektronen. Es wird mit Plasmen gearbeitet, die aus nur 1g Wasserstoffionen besteht. Die Thermische Energie des heißen Wasserstoffplasmas reicht aus, um 100 kg Stahl zu verdampfen. Um mit diesen hohen Temperaturen arbeiten zu können werden die Plasmen und ihre thermische Abstrahlung mit Magnetfeldern, deren Stärke das 100.

000 fache des Erdmagnetfeldes übersteigen, im Vakkuum eingefangen. Bei den meisten Techniken treten energiereiche Neutronen auf. Da sie sich nicht durch Magneten auf eine definierte Bahn zwingen lassen, treffen sie auf das das Plasma umgebende Material und sind für dessen Verstrahlung verantwortlich. Sie werden aber dazu benuzt, um mit Lithium das meist benötigte Tritium herzustellen. Prinzipiell kann man zwischen vier Techniken der Kernfusion unterscheiden: Die Induzierte Trägheitsfusion, die Fusion mit magnetischem Einschluß, die kalte Kernfusion und die Fusion aus der Teilchenbeschleunigertechnik. Fusion mit magnetischem Einschluß Die Fusion mit magnetischem Einschluß findet in geschlossenen Vakuumkammern statt.

Das Gas, bestehend aus Wasserstoff, Deuterium oder Tritium oder Kombinationen dieser Stoffe, wird in dieser Kammer auf 50 bis 400 Millionen Grad erhitzt und liegt dann als Plasma vor, d.h. das Gas ist vollständig ionisiert. Durch Magnetfelder wird das Plasma auf eine Bahn gezwungen, die verhindert, daß das Plasma die Wand berührt. Unter hohem Druck und Temperatur kommt es schließlich zum thermonuklearen Brennen. Allgemein ergeben sich beim magnetischen Einschluß folgende Probleme: Durch die Schwierigkeiten beim Plasmaeinschluß und durch Verunreinigungen kommt es zu Energieverlusten Durch Neutronenbeschuß wird das Reaktormaterial radioaktiv Die extremen Bedingungen führen zu hohen Materialermüdung und damit zu hohen Kosten Große gespeicherte Energiemengen in den Magnetfeldern und radioaktives Inventar stellen ein Gefahrenpotential dar.

Hoher Energiebedarf beim Betrieb durch die benötigte Heizung und Magnete (300MW Verbrauch einer mittleren Großstadt!!).   Beim Magnetischen Einschluß gilt es noch, drei Reaktortypen zu unterscheiden: Stellaratoren Hier ist das Reaktorgefäß ähnlich wie beim Tokamak eine ringförmige Röhre, also ein Torus. Das Plasma fließt hier im Kreis, wobei es durch geeignete Magnetfelder in sich verwunden wird, um Abstrahlungsverluste zu minimieren. Diese zusätzlichen Magnetfelder verkomplizieren die Technik des Reaktors. Auch erreicht man derzeit nicht den gewünschten Einschlußgrad (Produkt aus Druck mal Zeit). Der Stellerator ist aber für die Konstruktion eines energieliefernden Reaktors dadurch sehr interessant, da er sich zum kontinuierlichen Betrieb eignet (vgl.

Tokamak). Tokamak Tokamak ist eine Abkürzung für die Russische Bezeichnung von Toroidkammer im Magnetfeld. Beim Tokamak handelt es sich um einen Torus, in dem das Plasma im Kreis fließt (vgl. Stellerator). Über äußere Spulen wird ähnlich wie bei einem Transformator ein Strom im Plasma induziert. Durch diesen Strom werden die Abstrahlungsverluste minimiert, so daß kein Magnetfeld für die Verwindung des Plasmas notwendig wird.

Zusätzlich stellt der Strom im Plasma eine Heizmethode dar. Mit den Tokamaks ist man den Bedingungen für selbsterhaltendes thermonukleares Brennen bisher am nächsten gekommen, was vielleicht aber auch daran liegt, daß hier die intensivsten Forschungen getätigt werden. Als Hauptnachteil des Tokamak ist zu nennen, daß er sich nicht für einen kontinuierlichen Betrieb eignet, sondern regelmäßig wieder neu mit Plasma aufgeladen werden muß (vgl. Stellerator), was auch eine extreme Belastung der Anlage ausmacht. Spiegelmaschinen Das Reaktorgefäß bildet eine gerade Röhre. An den Enden wird das Plasma durch entsprechende Magnetfelder in seiner Flußrichtung reflektiert.

Bei der Reflexion an den Ende kommt es zu erhöhten Energieverlusten. MIGMA-Konzept Bei dem MIGMA-Verfahren werden aus einem Teilchenbeschleuniger Teilchen (z.B. Deuteronen und Trionen) wiederholt zur Kollision gebracht und verschmelzen. Es ist mit diesem Konzept auch eine Fusion zwischen Protonen und dem Bor-11 Isotops möglich. Es entstehen vier energiereiche Alphateilchen (4He2+).

Das besondere an diesem Ansatz ist, daß kein radioaktives und toxisches Tritium benötigt wird und keine Neutronen enstehen, welche für die unerwünschte Radioaktivität verantwortlich sind. Hauptproblem bei dieser Technik sind laut KfK die Energieverluste der Teilchen durch die entstehende Synchrotronstrahlung. Leider wird diese von einigen Physikern für genial gehaltene Technik weltweit ignoriert. Es werden zur Weiterentwicklung trotz ansehlicher Anfangserfolge in den 70 Jahren nicht genügend Fördermittel zur Verfügung gestellt. Grund hierfür könnte sein, daß bei dieser Reaktion keine energiereichen Neutronen entstehen, die zu dem sehr interessanten Nebenprodukt, dem spaltbaren Material, führen. Induzierte Trägheitsfusion Ein Gemisch aus Deuterium und Tritium wird von einer kleinen kugelförmigen Hülle umgeben.

Diese 1mm großen Kügelchen (Pellets) werden im Vakuum mit einem Hochenergielaser oder einem Leicht- oder Schwerionenstrahl beschossen. Bei der so herbeigeführten Implosion wird das Wasserstoffgemisch auf ein fünfzigstel seines Volumens komprimiert. Die extreme Erhitzung läßt das fusionierende Plasma enstehen. Durch Simulationen ließ sich ermitteln, daß der thermonuklare Energieausstoß typischerweise das Hundertfache der Laserenergie beträgt. Hauptproblem ist die Konstruktion der benötigten kurzwelligen Hochenergielaser bzw. Beschleuniger.

Des weiteren entstehen auch hier hochenergetische Neutronen. Die Konstruktion eines energiegewinnenden Reaktors, der z.B. zehn Pellets pro Sekunde zünden würde, wäre denkbar. Kalte Kernfusion Die Reaktion wurde aus theoretischen Überlegungen schon in den vierziger Jahren von F. Frank und Andrej D.

Sacharov vorhergesagt und 10 Jahre später durch einen Zufall von Luis W. Alvarez experimentell nachgewiesen. Bei der kalten Kernfusion oder auch Myon -katalysierten kalten Kernfusion kann man die hohen Temperaturen und riesigen Versuchsaufbauten umgehen. Die kalte Kernfusion läuft bei Temperaturen ab 13 bis über 1000 Kelvin in festen, flüssigen oder gasförmigen Medien ab. Die Reaktion kann in einer einfachen mit Tritium und Deuterium gefüllten Kammer durchgeführt werden. Hierzu läßt man negative Myonen in die Kammer eindringen.

Die Myonen stellen durch besondere Stoßprozesse enge Bindungen zwischen den Wasserstoffmolekülen her. Die so myonisch gebundenen Kerne verschmelzen und es wird Energie in Form von Wärme frei. Die Myonen werden dabei wieder freigesetzt und können unter bestimmten Bedingungen weitere Fusionen katalysieren. Myonen kann man künstlich mit Hilfe von Teilchenbeschleunigern erzeugen. Damit ein Myon mehrere Kernfusionen katalysieren kann, sind hohe Energien für dessen Erzeugung notwendig. Leider wird mehr Energie benötigt, um die Reaktion ablaufen zu lassen, als später frei gesetzt wird.

Die kalte-Fusion ist zur Zeit nur für die Grundlagenforschung interessant. Es gibt bis heute keine reproduzierbare Versuchsanordnung mit positiver Energiebilanz.   Aspekte der TA Kernfusion Technologischer Aspekt Ziel der weltweiten Fusionsprogramme ist die konkrete Konstruktion eines Reaktors. Die prinzipielle Realisierbarkeit eines energieliefernden Reaktors ist nicht geklärt. Es wird gehofft, dies in sechs bis zehn Jahren beantworten zu können. Strategie hierbei ist die der wahrscheinlichsten Widerlegung, d.

h. man versucht die Unlösbarkeit zu beweisen. Einige Experten schätzen sogar, daß ein wirtschaftlich arbeitender Reaktor, ohne generelle konzeptionelle Änderungen der Fusionstechnik, ausgeschlossen ist. Die früheste Realisierung wird in 50 bis 60 Jahren angenommen. Es muß dabei das sogenannte thermonukleare Brennen hervorgerufen werden, d.h.

ein Plasmagemisch muß in einen Zustand gebracht werden, in dem die Umsetzung von Wasserstoff zu Helium kontrolliert und kontinuierlich vollzogen wird. Die immanenten Probleme bezüglich der Realisierung oder einer Vorhersage werden durch die nichtlinearen physikalischen Phänomene des Plasmas hervorgerufen. Hieraus entspringen zwei fundamentale Hindernisse: Es ist nicht möglich einen kleinen Versuchsreaktor zu bauen und dann auf ein größeres Modell hochzurechnen. Vorhersagen sind nur an einem der Größe des Endreaktors entsprechenden Testreaktors zu erproben (immense Kosten), die derzeitig zur Verfügung stehende Computerleistung reicht bei weitem nicht aus, um eine Simulation mit allen Parametern zu errechnen (zwingende experimentelle Forschung). So entstanden bei der Forschung immer neue unvorhergesehene Probleme, die die zeitlichen Prognosen über die Verwirklichung der Programme sich nie bewahrheiten ließen. Um einen Fusionsreaktor zu konstruieren, müssen parallel zur eigentlichen Plasma-Physik eine Vielzahl andere Techniken entwickelt werden, die auch für andere Anwendungsgebiete von Nutzen sein könnten (supraleitende Magneten, Radiosender im Höchstfrequenzbereich, intensive Teilchenstrahler, Vakuumtechnik, etc.

). Wobei die Resultate dieser Forschungstätigkeiten wissenschaftlich als eher gering eingestuft werden. Dadurch, daß die Fusionsprogramme ausschließlich institutionell koordinierte Großprojekte sind, sind die Bau-, Planungs- und Anhörungsphasen so lang, daß die angewanten Techniken, nach Beendigung eines Programmes wieder überholt sind. Ökonomischer Aspekt Zur Zeit werden in Amerika, Asien und Europa jährlich etwa zwei bis drei Mrd. DM für funktionsfähige Fusionsreaktoren ausgegeben. Von der Kommission der EG wurde das nächste europäische Fünf-Jahres-Programm mit Aufwendungen von insgesamt 1,5 Mrd.

Rechnungseinheiten (das entspricht etwa 4 Mrd. DM) vorgeschlagen. Nach heutiger Absicht werden nur die Flagschiffe des amerikanischen und des europäischen Forschungsprogramms, nämlich TFTR und JET, bereits Tritium verbrennen und damit Eigenschaften eines echten Fusionsfeuers demonstrieren. Die Radioaktivierung ihrer Bauteile erfordert Abschirmungen und die Anwendung fernbedienter Spezialwerkzeuge für Reperaturen und zur Manipulation von Komponenten. Die INTOR-Studie (INTOR = International Tokamak Reactor), die von Europa, Japan, UdSSR und USA gemeinsam ausgearbeitet wurde, geht über TFTR und JET noch hinaus und ist Symbol für die ersten Gehversuche auf dem Weg zu einem wirklichen Reaktor. Die letzte Entwicklungsstufe vor der kommerziellen Nutzung wäre die Demonstration eines ökonomischen Systems; diese liegt noch gut 30 Jahre vor uns.

Ein nennenswerter energiewirtschaftlicher Beitrag der Kernfusion ist wohl erst in 50 Jahren zu erwarten. Deutschland finanzierte 1985 etwa 140 Millionen DM pro Jahr in eigene Fusionsprojekte und nocheinmal 100 Millionen DM pro Jahr über die EG in das internationale Fusionsprogramm. Der Bau und 20 jährige Forschungsbetrieb von NET wird voraussichtlich fünf Milliarden ECU (1 ECU ¯ 2,23DM, '85) kosten. Auf Deutschland fällt ein Anteil von fünf Milliarden DM (innerhalb von 20 Jahren). Vergleich: Ein Bau eines Leichtwasserreaktors kostet etwa fünf Milliarden DM. Um sicherzugehen, daß man für die Aufwendungen der Forschung auch den wirtschaftlichen Nutzen ziehen kann, wird vorgeschlagen, die Internationalisierung der Forschung auf einen Wirtschaftsraum zu konzentrieren.

Einer Einschätzung der Wirtschaftlichkeit von Fusionsreaktoren ist nicht sehr einfach. Es existiert noch kein funktionsfähiger Reaktor, der eine fundierte Kosteneinschätzung ermöglichen würde. Dies ist nach derzeitiger Einschätzung nicht vor dem Jahr 2050 zu erwarten. Ein Vergleich der verschiedenen Kraftwerkstypen müßte sich auf diesen Zeitpunkt beziehen. Wie sich jedoch die Rohstoffpreise, Endlagerkosten und Steuern für die bisherigen Energieträger entwickeln werden, ist nur unsicher abzuschätzen. Nach derzeit gängigen Schätzungen würden die Anlagenkosten für einen Fusionsreaktor zwei bis dreimal höher sein als bei einem Spaltreaktor und wesentlich höher als bei einem Brutreaktor.

Auch liegt die Verfügbarkeit der Fusionsreaktoren unter der von Spaltreaktoren, da Fusionsreaktoren häufiger gewartet werden müssen (Wandwechsel), wegen ihrer großen Komplexität störanfälliger sind und die Energieerzeugung in relativ kurzen Zyklen abläuft. Um gegenüber diesen Reaktoren wirtschaftlich konkurrieren zu können, muß ein Fusionsreaktor also niedrigere Brennstoffkosten, höhere Zuverlässigkeit, höhere Sicherheit und geringere Endlagerkosten aufweisen. Dies bedeutet, daß u.a. das Problem der geringen Wandlebensdauer gelöst werden muß. Es ist jedoch nach wie vor nicht sicher, ob die Forschung schließlich einen funktionsfähigen Reaktor erbringen wird.

Zwar ist eine Erweiterung des Fusionsprogrammes auf andere Reaktortypen nur mit einer geringen Budget-Steigerung möglich, da sich die Forschungsergebnisse weitgehend transformieren lassen, jedoch stellt sich die Frage, ob die Fusionsforschung neben ihrem eigentlichen Ziel noch weitere Erkenntnisse von solcher Bedeutung erbringt, daß sie die hohen Forschungsgelder rechtfertigt. Die Fusionsforschung erbringt neue Erfahrungen und Ergebnisse im bereich Mikrowellen-, Vakuum- und Magnetbautechnik, jedoch ist die Bedeutung, die diesen Erkenntnissen beigemessen wird, eher gering. Sie würden bestenfalls den beteiligten Firmen Marktvorteile gegenüber Konkurrenten einräumen, was hinsichtlich der starken japanischen und amerikanischen Industrie bedeutsam sein kann. Nebenprodukte der Forschung, wie sie sich zum Beispiel in der "Teflonpfanne der Weltraumforschung" finden, sind bei der Kernfusionsforschung nicht zu erwarten. Spin-off-Effekte sind wegen des eng begrenzten Aufgabenfeldes nicht zu erwarten. In Anbetracht der bekannten Probleme und der langen Bauzeiten, bedingt durch die große Komplexität der Fusionsreaktoren, ist nicht vor 2050 damit zu rechnen, daß Fusionskraftwerke nennenswert zur Energieversorgung beitragen, und auch danach wird der Anteil nur langsam steigen und nicht über den, der heute von Spaltreaktoren erbracht wird, hinausgehen.

Dies liegt auch darin begründet, daß Fusionsreaktoren wegen der hohen Anlaufzeiten und der geringen Verfügbarkeit nur als Grundlastkraftwerke geeignet sind. Eine Möglichkeit, die Wirtschaftlichkeit der Fusionskraftwerke enorm zu steigern, ergibt sich aus der Brutfähigkeit der Reaktoren. Pro Energieeinheit erzeugen Fusionsreaktoren zehnmal mehr Neutronen als Spaltreaktoren, die zudem noch energiereicher sind. Einbringen von uran- oder thoriumhaltigen Materialien in die Reaktionskammer würde eine Erbrütung spaltbaren Materials ermöglichen. Mit dem so erbrüteten spaltbaren Materialien ließen sich zehn Spaltreaktoren gleicher Leistung betreiben, bei hochkonvertierenden Reaktoren (Brutreaktoren) sogar 40 - 60. Man geht sogar soweit, daß sich die Fusionsreaktion zum Erbrüten von Material lohnen würde, selbst wenn der Fusionsreaktor nicht zur Energieproduktion direkt benutzt werden würde, ja selbst, wenn der Reaktor nicht selbsterhaltend thermonuklear brennen würde, also getrieben werden müßte.

Einen ökonomischen Faktor stellt die Förderung der Forschung dar. Die bereitgestellten Mittel fließen über die Forschungszentren an die Industrie, welche die Teile für Reaktoren, Versuchsanordnungen etc. produziert. Dies stellt einen wirtschaftlichen Faktor dar, der sogar zu Überlegungen führt, Länder, in denen die Reaktoren gebaut werden, verstärkt zur Finanzierung des gemeinsamen Forschungsprojektes heranzuziehen. In den USA wird ein erheblich größerer Teil der Forschungsunterstützungen von der Industrie aufgebracht. Insgesamt fördern die USA die Fusionsforschung mit über 500 Mio.

US-$ jährlich. Japan hat ein sehr ehrgeiziges Fusionsforschungsprogramm und fördert dies jährlich mit einem Etat, der dem gesamteuropäischen gleichkommt. Hier werden ebenfalls nennenswerte Beiträge von der Industrie geleistet. Dies liegt jedoch auch an der zum Teil engen Verknüpfung von Industrie und Universitäten. Den zeitlichen Verlauf der Förderprogramme kann man der Abbildung 1 entnehmen. Ökologischer Aspekt Ein Beweggrund für die Suche nach neuen Energiequellen ist die Reduzierung des CO2-Ausstoßes, da dieses Gas erheblich zum Treibhauseffekt beiträgt.

Hier jedoch liegen die Chancen für einen Fusionsreaktor, zu dieser Problematik positiv beizutragen, nicht sehr gut. Zum einen liegt der Anteil der gesamten Energieproduktion am CO2-Ausstoß bei ca. 20%, zum anderen wird der Fusionsreaktor nicht als Ersatz für Kraftwerke mit fossilen Brennstoffen angesehen, sondern als weitere nukleare Option. Dies liegt in der technischen Natur des Fusionsreaktors begründet, in seiner niedrigen Verfügbarkeitszeit und langen Anlaufzeit. Nicht zuletzt ist mit Fusionsreaktoren derzeit nicht vor 2050 zu rechnen, so daß bereits vorher Wege zur Verminderung des Treibhauseffektes gefunden werden müssen. Auch für einen Einsatz in Entwicklungsländern, wo der Bedarf an Energieversorgung in nächster Zeit stark steigen wird, ist der Fusionsreaktor wegen der Komplexität, der späten Verfügbarkeit und den hohen Kosten eher ungeeignet.

Studien, welche den Vorteil der Fusionsreaktoren gegenüber den Spaltreaktoren hinsichtlich des CO2-Ausstoßes bei Förderung und Produktion der Brennstoffe und Materialien untersuchen, liegen leider nicht vor. Fusionsreaktoren benötigen zum Erreichen der Fusionsparameter bei derzeitiger Technik giftiges Beryllium. Die Handhabung und Verarbeitung ist durchführbar, wie JET beweist. Inwieweit jedoch das Beryllium wärend des Reaktorbetriebes nach außen gelangt, ist nicht bekannt. An radioaktiven Materialien sind Tritium und durch Neutronenbeschuß aktivierte Reaktormaterialien zu beachten. Die Eigenschaften des Tritiums sind weitgehend erforscht.

So liegen für das Tritiuminventar umfangreiche Gefahrenstudien vor. Problematisch ist die Handhabung des Tritiums dadurch, daß dieses Gas durch nahezu alle Materialien diffundiert, ganz besonders aber durch die stark erwärmten Reaktorwände. Technische Lösungen hinsichtlich der Gebäudeabdichtung sind teilweise vorhanden. Ein wichtiger und kaum beherrschbarer Austrittspunkt für Tritium ist jedoch das Kühlsystem, da sich einmal in das Kühlmittel gelangtes Tritium nicht wieder entfernen läßt. Hinsichtlich der Strukturmaterialien des Reaktors sind Vorhersagen und Risikoabschätzungen wesentlich schwerer aufzustellen, da noch kein endgültiges Reaktorkonzept vorliegt. Die Reaktorwand wird durch Neutronenbeschuß aktiviert und muß regelmäßig ausgewechselt werden, da der Neutronenbeschuß auch zur Materialermüdung führt, unterstützt durch die extremen Bedingungen, denen das Material ausgesetzt ist.

So wurde zum Beispiel bei der ersten erfolgreichen Fusionsreaktin im JET 1992 bei einem Tritiumanteil von 14% und 2 Sekunden Brennintervall die Reaktorwand so stark aktiviert, daß ein Betreten erst nach mehreren Wochen wieder möglich war. Die Reaktorwand muß als radioaktiver Müll gelagert werden, so daß sich auch hier ein Entsorgungsproblem ergibt. Nach derzeitigen Einschätzungen wird die während des Reaktorbetriebes anfallende Abfallmenge sehr groß sein, größer als die eines Spaltreaktors. Jedoch ist der Abfall anders geartet als bei Spaltreaktoren. Je nachdem, welche Materialien schließlich gewählt werden, kann die Halbwertszeit des Mülls verhältnismäßig gering sein. Bei Verwendung von Titan und Vanadium ließe sie sich so reduzieren, daß nach 30 - 50 Jahren eine Wiederverwendung der Materialien oder gar des Mantels möglich wäre.

Dieser Vorteil wird jedoch deutlich geschwächt, wenn man beachtet, daß nach derzeitigem Kenntnisstand ein Wandwechsel wohl alle zwei Jahre erforderlich wäre, so daß trotz allem erhebliche Lagerkapazitäten erforderlich wären und die Menge des radioaktiven Materials groß wäre. Hinsichtlich des Gefahrenpotentials des Abfalles existieren noch keine detaillierten Studien. Auch Störfallstudien gestalten sich noch schwierig, da noch keine endgültigen Daten für einen Reaktor vorliegen. Gefahrenpotential bergen die starken Magnetfelder und die in ihnen gespeicherte Energie. Ein plötzliches Zusammenbrechen der Magnetfelder würde zu einer mechanischen Zerstörung des Reaktors führen. Bei der derzeit geplanten Bauweise des Reaktorgebäudes (Containment) mit mindestens 2,5 m dicken Wänden (auch zur Strahlungsabschirmung) würde dies jedoch nicht zu einer Beschädigung desselben führen und somit wäre ein Austritt des Radioaktiven Inventares unwahrscheinlich.

Ein Durchgehen der Fusionsreaktion (Leistungsexkursion), wie sie bei Spaltreaktoren möglich ist, wäre bei Fusionsreaktoren ausgeschlossen, da bereits geringe Verunreinigungen des Plasmas zum Erliegen der Reaktion führen. Kleinere Störfälle, wie z.B. ein Leck im Reaktorgefäß, hätten vergleichbare Folgen wie bei einem Spaltreaktor. Das Austreten radioaktiven Materials innerhalb des Containments wäre durchaus möglich. Ein Austritt radioaktiven oder toxischen Materials außerhalb des Reaktorgebäudes und damit eine Gefährdung der Umwelt durch innere Einflüsse ist also nahezu ausgeschlossen, nicht jedoch bei äußeren Einflüssen, die zur Zerstörung des Containments führen würden.

Des weiteren ist anzunehmen, daß im normalen Betrieb die radiologischen Belastungen nicht niedriger als die eines Spaltreaktors ausfallen werden. Sehr bemerkenswert ist, daß Risikostudien nahezu überhaupt nicht durchgeführt werden. Lediglich für Tritium wurden umfangreiche Studien angefertigt, wobei dies auch von großem Interesse hinsichtlich der Tritiumhandhabung im militärischen Bereich und in Spaltreaktoren ist. Selbst für JET wurden keine umfangreichen Studien angefertigt, welche sich mit den Möglichen Auswirkungen eines Störfalles beschäftigen. Erst Ende der 80er Jahre wurde an einem verkleinerten Modell eines Fusionsreaktors Störfallforschung betrieben. Die an diesem Testreaktor TESPE gesammelten Erkenntnisse ergaben eine weitgehende Beherrschbarkeit der möglichen Störfälle, jedoch ist wie bei den meißten Ergebnissen der Fusionsforschung eine Übertragung (Skalierung) auf größere Reaktoren nur begrenzt oder mit Faustregeln möglich.

Der Nutzen dieser Studien ist also begrenzt. Allgemein wird darauf verwiesen, daß sich in großem Umfange den Risikostudien erst zugewandt wird, wenn die plasmaphysikalischen Probleme als lösbar gelten. TESPE: Der Kompakttorus TESPE steht in Karlsruhe, seine Aufgabe ist es Störfälle zu simulieren und mögliche Schwachpunkte in der Konstruktion des Torus aufzudecken. Er ist der erste seiner Art. TESPE ist ein verkleinertes Modell der Magnetkonfiguration künftiger Großanlagen. Die bisher untersuchten Störungen waren sowohl in ihren elektrischen wie in den thermischen und mechanischen Konsequenzen sicher beherrschbar.

Das Experimentierprogramm an TESPE soll 1988 abgeschlossen werden.(Spektrum der Wissenschaft Juni 1987) Sozialer Aspekt Aus den Gesprächen mit zahlreichen Experten aus den Deutschen Plasmainstituten gab es folgende Aussagen zu dem Sozialen Aspekt. Auf der Seite der Wissenschaftler In Fachkreisen wird diskutiert, ob die Öffentlickeit überhaupt legitimiert ist informiert zu werden. Die Argumentation hierbei ist, daß die Öffentlichkeit aufgrund ihres mangelnden Wissens nicht in der Lage ist (wie auch das Parlament), die Problematik, die den Entscheidungen zugrunde liegt, zu durchschauen. Es wird bezweifelt, daß die in Erscheinung tretende Minderheit repräsentativ für die Öffentlichkeit ist. Die Inhalte der Äußerungen dieser Minderheit seien von anderen Prozessen gesteuert, die mit der tatsächliche Meinung der Gesellschaft wenig zu tun haben.

"Meiner Meinung nach muß die Bevölkerung die wesentlichen Entscheidungen der Wissenschaft selbst überlassen." (Wissenschaftlicher Direktor de IPP) . Als limitierender Faktor ist hier das fehlende Vertrauen der Bevölkerung zur Wissenschaft zu sehen. Nach Meinung der Experten gibt es im Moment genügend Techniker und Wissenschaftler auf den relevanten Gebieten für die Kernfusionsforschung. Man sieht aber eine große Gefahr falls die Geldmittel gekürzt werden, weil dann der Anreiz, in die Plasmaphysik einzusteigen, immer geringer wird, was einen Basisverlust bedeuten kann. Ebenso führt eine in ihrer Intensität abnehmende Forschung insbesondere im Bereich der Hochschulen zu einer sinkenden Zahl von Quereinsteigern.

Da aber auch in näherer Zukunft kein erhöhter Personalbedarf von Nöten sein wird, da eine Verkürzung der Entwicklungszeit durch eine größere Mitarbeiterzahl für unwarscheinlich gehalten wird, gibt es kein Interesse an einer Aufstockung des Budgets. In einer denkbaren Auflösung der Arbeitsgruppen in den Großforschungseinrichtungen und deren vollständigen Einbindung in europäische bzw. internationale Großprojekte wird eine große Gefahr für die Kontinuität der Forschung erkannt: Die Projektanbindung kann zu einem fast vollständigen Informationsverlust insbesondere bei einem Generationswechsel führen. Ein weiteres Problem, das von den Experten genannt wurde, ist das es zu wenig Anreizmechanismen in den Forschungseinrichtungen gibt. Außerdem die starre Besoldungsstruktur nach den Beamtentarifen wird als veraltet betrachtet. Außerdem ist die unentschlossene Haltung der Bundesregierung bemängelt worden.

Aus Sicht der Experten hat man noch nicht die Notwendigkeit der kontrollierten Fusion verstanden. Führende Mitarbeiter in den Forschungseinrichtungen fühlen sich immer mehr als "Kürzungsverwalter". Änderungen der Rahmenbedingungen scheinen dringend erforderlich: Neben einer flexibleren Handhabung des Beamtentarifs wird auch eine Angleichung des wirtschaftlichen Vorsprungs ausländischer Gastwissentschaftler bei einer länderübergreifenden Kooperation gefordert, um sozialen Frieden zu bewahren. Wichtiger erscheint jedoch eine stärkere Motivation der Mitarbeiter durch politische Willensbildung und eine Verbesserung von Organisationsstruktur und Management. Ein Dilemma für die Fusionsforscher besteht vor allem darin, daß sie nur ungern auf mögliche Vorteile von Fusionsreaktoren z.B.

gegenüber Spaltreaktoren hinsichtlich Sicherheits- bzw. Umweltfragen hinweisen. Nach der Ansicht der Experten verschlechtert dies nur das (ohnehin geringe) Ansehen konventioneller Kerntechnik. Über die Bewilligung von Forschungsgeldern haben die Forschungsministerien der Nationen zu entscheiden. Da hier jedoch selten in der jeweiligen Fachsparte kompetente Leute arbeiten, benötigen diese den Rat von Experten. Diese rekrutieren sich jedoch wegen des enormen Umfanges und hohen Anteils am Gesamtprogramm aus den geförderten Bereichen des Fusionsprogrammes, dem magnetischen Einschluß.

Diese Forscher stehen unter einem gewissen Erfolgsdruck. In ihr Projekt, dem sie die Durchführbarkeit vorhersagten, sind gewaltige Gelder geflossen. Einzugestehen, daß Fehler gemacht wurden oder man sich gar auf einem toten Gleis der Forschung befindet, ist mit der Gefahr des Zusammenstreichens des Etats seitens der Ministerien verbunden und auch mit einem gewissen psychologischen Druck. Die Wissenschaftler, die die Projekte im Auftrage des BMFT begutachten, werden aus Loyalitätsgründen eher für ihre Kollegen urteilen. Insofern werden die Experten anderen Projekten, mögen sie auch ebenfalls Hoffnungen in sich bergen, keine Chancen geben indem sie zur Förderung raten, würde dies doch bedeuten, daß an ihrem Etat Abstriche fällig wären, da die Forschungsprogramme in ihrem Gesamtumfang begrenzt sind. Ähnliche Mechanismen erschweren es den Forschern der nicht geförderten Projekte, in namhaften Zeitschriften Artikel zu veröffentlichen.

Die Redaktionen bedienen sich kompetenter Experten, um zu verhindern, daß unseriöse oder für den Fachmann offensichtlich lächerliche Artikel zur Veröffentlichung gelangen. Auch hier stammen die Experten meißtens aus den geförderten Projekten, und auch hier haben sie kein Interesse daran, eine Stimmung gegen ihre Projekte entstehen zu lassen. Auf der Seite der Bevölkerung Die "Öffentlichkeit" hat Einfluß auf die Forschung über die Institutionen des Staates und den damit verbundenen Haushaltsmitteln. Das das große Mißtrauen der Bevölkerung gegenüber den Kerntechnologien wirkt sich auf die politische Förderung und eindeutige Stellungsnahme hemmenden aus. In den siebziger Jahren wurde vor dem Hintergrund der Ölkrise die Kernfusion als DIE Lösung der Energieprobleme in der Zukunft präsentiert. Militärische Interessen und Forschungen werden als zivile Energieprojekte vorgestellt.

Der Standpunkt der Gesellschaft bezüglich der Akzeptanz der Fusionstechnologie ist nicht eindeutig bekannt und wird als Unsicherheit bei der Entwicklung des Reaktors angesehen. Dies läßt sich auf den geringen Informationsstand der Bevölkerung und das prinzipielle Mißtrauen gegen Kernenergieanlagen zurückführen. Ein deutliches Akzeptanzproblem wird von allen Beteiligten erwartet. Das Problem der radioaktiven Freisetzung im Normalbetrieb und den Fragen der Endlagerung der radioaktiven Abfälle führt ohne Zweifel zu den selben Akzeptanzproblemen wie bei der Kernspaltung, auch wenn die Halbwertszeiten deutlich geringer sind und ein geringeres Gefährdungspotential der Reaktoren zu Grunde liegt. Man scheut aber gerade den Vergleich mit Kernspaltungsreaktoren, denn man wird Kernkraftgegner generell nicht von Kernenergie überzeugen können, da es immer ein Restrisiko geben wird. Dadurch werden auch wieder langwierige Genehmigungsverfahren von Nöten sein und können u.

a. auch einen deutschen Standort für ITER gefährden. Wären Fusionsreaktoren heute verfügbar, wäre ihr Einsatz ähnlich dem von Brutreaktoren nachhaltig gefährdet. Für die Zukunft wird eine deutlich Verstärkung der Kritik an der Kernfusion erwartet. Deswegen sollte man gezielte Maßnahmen zur Verbesserung der Akzeptanz durchführen. Größtenteils wird die Auffassung vertreten, daß Akzeptanz keine Konstante der Geschichte ist.

Zu diesem Thema gibt es einen interessanten Artikel von Cesare Marchetti "Die Lebenskurve von Energiequellen läßt sich berechnen" Cesare Marchetti vom Internationalen Institut für Angewandte Systemanalyse (IIASA) behauptet, daß die Kernenergie sich noch ein Jahrhundert weiterentwickeln wird und dann erst von neuen Energieträgern abgelößt wird. Er vergleicht die Skepsis gegenüber der Kernfusion mit der gegenüber der Einführung der Eisenbahn, des Autos oder der Elektrizität. Er sagt weiter: "Sie gleichen oft bis in Details den Reaktionen auf die Kernenergie, so daß ein grundlegender Verhaltens-Mechanismus erkennbar wird. Als Ergebnis seiner Untersuchungen kommt er zu dem Schluß: Die Kernenergie wird erst nach dem Jahre 2100 allmählich einer neuen Primäreenrgieart weichen. Als Grundlage für seine exakten Aussagen benutzt er die Volterra-Lotka-Gleichungen mit denen man die Marktanteile der einzelnen Energieträger berechnen kann. Die Gleichungen wurden 1920 für die Biologie aufgestellt.

Die tatsächlichen Kurven weichen nie mehr als 2 % Von den theoretischen Kurven ab. Diese Aussagen bedeuten, daß man die Lebenskurve einer Energie-Technologie errechnen kann, wenn man den Zeitpunkt ihrer ersten wirtschaftlichen Nutzung und die Daten bis zu einem Marktanteil von 2 bis 3 % kennt. Daraus ergibt sich der Zeitraum bis zum maximalen Marktanteil (Sättigung) dieser Technologie, dessen Höhe im Verhältnis zum Gesamtenergieverbrauch und der Zeitpunkt, wann diese Technologie wieder belanglos werden wird. Nach den Berechnungen für Energiequellen erwartet man um das Jahr 2025 eine neue Energiequelle und das wird mit hoher Wahrscheinlichkeit die Kernfusion sein. Philosophen mögen den Schluß ziehen, daß technologische Innovationen immer den gleichen Entwicklungsgang nehmen, weil sich Befürworter und Gegner mit ihren Argumenten die Waage halten: Aus den nüchternen Daten lassen sich derartige nachgeschobene Begründungen für das vorsichtige Verhalten des sozioökonomischen Systems nicht belegen." Politischer Aspekt Motiviert wird die immense Forschung an der Fusionstechnik hauptsächlich durch den benötigten, zukünftigen Energiebedarf und dem riesigen Energiepotential, das durch die Fusion erhofft wird.

Ziel der Forschung ist hier die Konstruktion einer Energiequelle. Die Grundlagenforschung der Plasmaphysik ist ein Nebenprodunkt, und wäre als alleinstehendes Projekt mit den entstehenden Kosten nicht zu rechtfertigen. Durch diese hohen Forschungskosten steht das Projekt unter extremen Erfolgsdruck. Sollte sich eine wirtschaftliche Energiegewinnung durch den Fusionsreaktor als nicht möglich herausstellen, stünden Wissenschaftler und Forschung unter heftiger, öffentlicher Kritik. Es wird ein Einbruch in dem Vertrauensverhältnis zwischen Wissenschaft und Öffentlichkeit befürchtet. Daraus resultiert eine recht starre Politik bezüglich der Fusionskonzepte, an denen gearbeitet wird.

Die öffentliche Politik bezieht keine klare Stellung zwischen Für und Gegen der Kernfusion. Auch dies wirkt sich auf den Erfolgsdruck aus, da es die Perspektive der Forschung für die Zukunft im Dunkeln lässt. Von den Wissenschaftlern wird deshalb eine klarere Stellungsnahme der Politiker und Maßnahmen zur Verbesserung der Akzeptanz der Kern- und Fusionstechnik in der Öffentlichkeit gewünscht. Die gemeinsame europäische Forschung und die großen Erfolge am JET-Projekt haben einen technologischen Vorsprung gegenüber den Programmen in der restlichen Welt entstehen lassen. Die Zusammenarbeit und Forschungskoordination in Europa wird als positiv bezeichnet. Hingegen ist die Meinung bezüglich einer weltweiten Zusammenarbeit (ITER) nicht so einheitlich.

Als Probleme werden angesehen die soziale Unruhe aufgrund unterschiedlicher Entwicklungsniveaus weltweit, Einfluß der allgemeinen politischen Gegebenheiten zwischen den Ländern/Entwicklungsgemeinschaften. Es wird befürchtet, daß die untechnische Politik sich zu sehr auf die technologische (z.B. Standortbestimmung des ITER-Reaktors) auswirkt. Standortdiskussionen führten schon beim JET zu zweijähriger Verzögerung des Baues. Beim ITER-Projekt bemüht man sich aus diplomatischen Gründen wichtige Positionen international ausgeglichen zu besetzen.

Dies war schon innerhalb von neun Monaten möglich. Was die Entschlossenheit der beteiligten Kartoffelbauern entschieden demonstriert. ITER wäre das erste weltweite, technische Geimeinschaftsprojekt. Es wird deshalb auch ein Experiment der Koordination und Diplomatie sein. Die Fusionstechnik wurde erstmals vom Militär zur Entwicklung der Wasserstoffbombe intensiver untersucht. Ein kontinuierliches Interesse und Unterstützung des Militärs ist damit verbunden geblieben.

Besonders deutlich wird dies in der Induzierten Kernfusion, bei der eine Nutzung für zivile Energiegewinnung als sehr unwahrscheinlich gilt. Ein höherer Pentagonbeamter habe sogar behauptet, daß die Laser-Induzierte Kernfusion der Öffentlichkeit nur als ziviles Projekt vorgestellt wurde, um die finanziellen Ausgaben und Vorschungen zu legitimieren, es sich dabei aber ausschlißelich um ein Militärisches Projekt handelt . Für das Miltär sind hauptsächlich die Abfallprodukte der Forschung (z.B. Hochenergielaser), Prestigegewinn (höheres Ansehen bei Wissenschaftlern durch uneigennützige Unterstützung) und die Abfallprodukte der Energiegewinnung (spaltbares Material, Tritium für die Waffenproduktion) interessant. Ein Tokamak-Experiment wird als eher uninteressant betrachtet.

Daher ist ein weltweites Forschungsprogramm überhaupt möglich. Aktuelle Fragestellungen der TA Auf allgemeine Kritik unter den Wissenschaftlern stößt der fehlende öffentliche und politische Rückhalt der Forschungsarbeiten. Verantwortlich dafür sind Akzeptanzprobleme mit der Kernenergiekonzepten. Es wird eine Willensbildung gefordert, die eine klare Perspektive in förderpolitischen Fragestellungen aufzeigt. Als empfohlene TA-relevante Fragestellungen zur Förderung der politischen Willensbildung gelten : Abschätzung der Entwicklung der Stromerzeugungskosten aller Energieträger bei Berücksichtigung von Umweltkosten wie CO2-Steuer, Endlagerkosten etc., umfassende Bestimmung der radiologischen Belastung für Lebewesen aus einem Enbdlager heraus (Berücksichtigung des Unterschiedes von Spalt- und Fusionreaktoren), Vergleich des Gefährdungspotentials einschließlich aller Apekte (von der Rohstoffgewinnung bis zur Stromerzeugung) für alle Energieträger Analyse der toxischen Belastungen durch die Bearbeitung un debn Einsatz von bestimmten Materialien, z.

B. Beryllium, im Fusionsreaktor, Einfluß der Komplexität auf die Anlagenzuverlässigkeit (wichtig auch für die Wirtschaftlichkeitsbetrachtung), zukünftige Entwicklung der Stromnetze, Bedarfsanteile von zentraler und dezentraler Stromversorgung und zukünftiger Anteil von Brut- und Spaltreaktoren an der Energieerzeugung. Weitere Punkte könnten sein: Prüfung der derzeitigen institutionellen Förderung der Großforschungsprojekte, bensonders in Hinblick auf das zu erwartende weltweite Forschungsprogramm (ITER). Analyse der öffentlichen Meinung zur sozialen und ökologischen Verträglichkeit des Fusionsforschung/-Reaktors.   Abschluß Kernfusion   "Die Fusionsforschung ist in mancher Hinsicht einmalig: Noch nie setzte sich die Grundlagenforschung ein so konkretes Ziel wie einen Reaktor. Noch nie erforderte ein technisches Produkt so intensive Grundlagenforschung wie der Fusionsreaktor.

Noch nie allerdings sollte ein technisches Produkt auch so fernab von allen alltäglichen, ja irdischen Maßstäben arbeiten." (bild der wissenschaft 7-1985, Seite 70 letzte Absätze)   Fachbegriffe zur Kernfusion   Blanket das den Reaktor auskleidende Brutmaterial Brüten Umwandlung von nicht spaltbaren in spaltbares Material z.B.: Uran-238 in Plutonium-239 Brutmaterial Radioaktives Material, das durch Neutronenbeschuß zu spaltbarem Material "gebrütet" werden soll. Deuterium Wasserstoffisotop Deuteron Deuteriumkern Einschluß Unter dem Einschluß versteht man die Technik, mit der das aufgeheizte Gas (Plasma aus Wasserstoff - Isotopen) im Vakuum festgehalten wird, ohne mit den Reaktormantelmaterialien in Kontakt zu kommen. IPP Institut für Plasma Physik in Garching (Unterabteilung des Max planck Instituts) Isotope Isotope sind Atome gleicher Stoffklasse, aber unterschiedlicher Kernmasse.

ITER International Tokamak Experimental JET Joint European Torus (Europaisches Tokamak Projekt) KFA Kernforschungsanlage Jülich KfK Kernforschungszentrum Karlsruhe Kontamination Unerwünschte Verunreinigung von Gegenständen durchradioaktive Stoffe Lawson-Kriterium Ist die Beschreibung der Funktion aller idealisierten Parameter zur Kernfusion Myon Myonen sind kurzlebige (Mtl. Lebensdauer 2ms) Elementarteilchen. Sie können positiv oder negativ geladen sein, haben ähnliche Eigenschaften wie Elektronen, aber eine 207 mal größere Masse. Sie kommen in der oberen Atmosphäre vor. NET Next European Torus Pellet Hohlkugel die Fusionspartner beinhaltet Plasma Stellerator Ringförmige Anordnung von magnetischen Feldern für plasmaphysikalische Experimente Tokamak Abkürzung für die russische Bezeichnung von Toroid - Kammer im Magnetfeld (Reaktor-Konzept) Tritium Wasserstoffisotop Triton Tritiumkern Windenergie Die Nutzung der Windenergie hat eine lange Tradition. So wurden "Windmühlen" schon vor mehr als 4.

500 Jahren - in der Blütezeit der babylonischen Kultur - zum Wasserschöpfen eingesetzt. Auf der Insel Kreta entstanden ab dem 13. Jahrhundert zahlreiche Windmühlen, wobei die Flügel der Windräder mit Segeln bespannt wurden. Mehr als 10.000 waren im Einsatz. Im nördlichen Europa wurden die ersten Windmühlen im 8.

Jahrhundert gebaut und im 19. Jahrhundert waren mehr als 30.000 Windenergieanlagen mit einer geschätzten Gesamtleistung von 300 bis 600 MW in Betrieb. Die Windmühlen wurden vorrangig zum Wasserpumpen eingesetzt. In den Jahren 1930 bis 1945 wurden in den USA und Europa mehrere größere Windkraftanlagen gebaut, mit Leistungen bis zu 1 MW. Mit der Marktdurchdringung von Erdöl und Erdgas ist das Interesse für Windkraftanlagen deutlich zurückgegangen, und erst mit der Ölpreiskrise Mitte der 70er Jahre wurden neue Windkraftanlagen projektiert und gebaut.

Die größte Windkraftanlage mit 3 MW-Nennleistung wurde im Jahre 1983 in Deutschland an der Nordseeküste in Betrieb genommen, wobei allerdings dieses Projekt nicht erfolgreich war, da die Konstruktion den auftretenden Windkräften nicht gewachsen war. Die Weiterentwicklung der Windkraftanlagen hat sich dann zu kleineren Leistungseinheiten verschoben, wobei Anlagen ab 50 kW-Leistung in zunehmendem Maße in den USA und in europäischen Ländern installiert wurden. Heute sind es bereits 300 kW- bis 500 kW-Anlagen, welche als "Stand der Technik" zu bezeichnen sind. In den letzten Jahren wurden in einigen Ländern die Windkraftanlagen in küstennahen Gebieten ständig ausgebaut, insbesondere in den USA, Dänemark, Deutschland, in den Niederlanden und in England. Die heute weltweit installierte Leistung von Windkraftanlagen wird auf 1.400 MW geschätzt, entsprechend einer Stromerzeugung von 6 TWh/Jahr.

Die Windkraftnutzung erfolgt derzeit im wesentlichen in windreichen Küstenregionen. Diese Regionen werden aber bei den zu erwartenden größeren Zubauraten schon in absehbarer Zeit knapp, sodaß in zunehmendem Maße auch Überlegungen zur Nutzung von Windenergie im Binnenland angestellt werden. Das Windenergiepotential Die Lufthülle der Erde ist einem globalen Bewegungssystem unterworfen, welches durch die Auswirkungen der Sonneneinstrahlung auf Erd- und Wasserflächen in Verbindung mit der Erdrotation aufrechterhalten wird und über welches örtliche Einflüsse gelagert sind. Die Luftbewegung in bodennahen Gebieten wird durch die Bodenreibung bedingt: Bäume, Waldstücke, Siedlungen, etc. bestimmen somit die Windverhältnisse. In diesem Falle handelt es sich um kleinräumige Änderungen in der Bewegung bodennaher Luftmassen.

Eine großräumige Variante der Luftbewegungen ist gegeben durch das Umströmen von Hügeln oder Bergformationen, von Tälern, Geländestufen und ähnlichen. Das weltweite Windenergiepotential beträgt etwa 0,2% der eingestrahlten Sonnenenergie, entsprechend etwa 370 TW bzw. 3 Mio TWh/Jahr. Dieser - theoretische - Wert entspricht der in den strömenden Luftmassen auftretenden Bewegungsenergie. Durch die Reibung der Luftmassen in den bodennahen Schichten verringert sich das Potential der Windenergie beträchtlich. Die zahlreichen weiteren Einflüsse, die an der Ausbildung der globalen und örtlichen Zirkulationsströme beteiligt sind, erschweren eine Abschätzung der zur Verfügung stehenden Energiemengen.

Als Richtwert für das weltweit (theoretisch) nutzbare Windenergiepotential werden etwa 3 TW (ca. 26.000 TWh/Jahr) angenommen. Das realisierbare Potential dürfte bei 1 TW (ca. 9.000 TWh/Jahr) liegen.

Für die Windgeschwindigkeit maßgebend sind die Bodenkonfigurationen und die Höhe über dem Grund. Man unterscheidet zwischen 3 typischen Bodenkonfigurationen: glatte, ebene Flächen (Meer, unmittelbare Küste), niedrige, bewachsene und ebene Flächen und Flächen mit hohen Hindernissen (Städte). Die mittleren jährlichen Windgeschwindigkeiten auf der Erdoberfläche erreichen in küstennahen Gebieten Werte über 5 m/s. Die hohen Windgeschwindigkeiten an den Küsten liegen darin begründet, daß durch die geringere Oberflächenreibung über der offenen See, die zuströmenden Luftmassen hohe Geschwindigkeiten erreichen. Bei günstigen topografischen Lagen im Küstenbereich können auch noch mehrere 100 km von der Küste entfernt hohe Windgeschwindigkeiten auftreten. Eine wesentliche Zunahme der Windgeschwindigkeit ist mit zunehmender Höhe über dem Boden festzustellen.

In einer Höhe von 50 m kann mit der 1,5-fachen Windgeschwindigkeit gegenüber einer Höhe von 10 m gerechnet werden. Da das Leistungsangebot mit der dritten Potenz der Windgeschwindigkeit wächst, bedeutet dies, daß in 50 m Höhe die 2,4-fache und in 100 m Höhe die 3,4-fache Windenergieleistung im Vergleich zu 10 m Höhe zur Verfügung steht. Das Windenergiepotential in Österreich wurde in den letzten Jahren nahezu flächendeckend ermittelt. An exponierten Lagen, insbesondere in windreichen Tälern und auf Bergspitzen, können in einer Höhe von ca. 30 bis 100 m über dem Boden Windgeschwindigkeiten auftreten, welche den Einsatz von Windkraftanlagen zur Stromerzeugung rechtfertigen. Nach einer im Jahre 1981 durchgeführten Abschätzung des Windenergiepotentials in Österreich wurde ein technisch nutzbares Windenergiepotential von jährlich 6.

600 bis 10.000 GWh abgeleitet /4/. Meteorologische Voraussetzungen Für die Auswahl eines für die Windenergienutzung geeigneten Standortes ist die Bestimmung der dort vorliegenden Windgeschwindigkeitsverteilung von Bedeutung. Da die Leistung des Windes mit der dritten Potenz der Windgeschwindigkeit ansteigt, wirken sich schon geringe Unterschiede der jährlichen mittleren Windgeschwindigkeit erheblich auf den Jahresenergieertrag (Stromerzeugung) aus. Aus diesem Grunde müssen im Binnenland detaillierte und örtlich hoch aufgelöste Untersuchungen der Windgeschwindigkeiten vorgenommen werden. Die mittlere jährliche Windgeschwindigkeit ist nur dort ein grober Hinweis auf die Stromerzeugung einer Windkraftanlage, wo Geschwindigkeitsschwankungen gering sind, wie beispielsweise in Küstenregionen.

Für Standorte mit starken Geschwindigkeitsschwankungen, wie beispielsweise in Binnenländern und insbesondere in alpinen Gegenden, ist die mittlere jährliche Windgeschwindigkeit für eine Abschätzung der Stromerzeugung mit einer Windkraftanlage nur wenig geeignet. An derartigen Standorten müssen genaue Messungen von Winddaten vorliegen, um zu einigermaßen abgesicherten Aussagen zu kommen. Mit günstigen Stromerträgen in Gebieten mit mittleren Windgeschwindigkeiten unter 3,5 m/s ist dann zu rechnen, wenn starke Geschwindigkeitsschwankungen gegeben sind, wie z.B. in manchen Teilen des Alpenvorlandes oder auch in Bergtälern. Forschung, Entwicklung und Anwendung in Österreich Forschung und Entwicklung auf dem Gebiet der Windkraftanlagen wurden in den OECD- Mitgliedsländern in internationaler Kooperation durchgeführt, wobei die Forschungsausgaben im Jahre 1993 bei 163 US $ lagen.

Die Forschungsausgaben der öffentlichen Hand für Windenergie-Nutzung waren in Österreich eher bescheiden und lagen im Jahre 1990 bei 0,21 Mio ÖS, im Jahre 1991 bei 0,76 Mio ÖS, im Jahre 1992 bei 1,41 Mio ÖS und im Jahre 1993 bei 0,82 Mio ÖS. Im Hinblick darauf, daß Windenergiekonverter heute einen sehr hohen technischen Stand aufweisen, haben sich die öffentlichen Ausgaben von den Bereichen Forschung und Entwicklung auf die Bereiche Demonstration und Markteinführung verschoben. In Deutschland wurde beispielsweise ein Förderungsprogramm für die Markteinführung von netzgekoppelten Windkraftanlagen beschlossen, wobei insbesondere durch günstigere Stromeinspeistarife die Anschaffung von Windkraftanlagen attraktiv gemacht wurde. So wurden im Jahre 1993 in Deutschland Windenergiekonverter mit einer Gesamtleistung von rund 155 MW neu errichtet, wodurch sich die installierte Windkraftleistung im Jahr 1993 nahezu verdoppelt hat. Im ersten Halbjahr 1994 wurden weitere 300 Anlagen mit einer elektrischen Leistung von rund 100 MW errichtet. Ende 1994 werden in Deutschland ca.

500 MW Windleistung installiert sein. Schlußfolgerungen und Empfehlungen Die Nutzung der Windenergie stellt auch für Österreich eine von vielen Möglichkeiten dar, erneuerbare Energiequellen zur Deckung der Energienachfrage heranzuziehen. Im Vergleich zu Photovoltaikanlagen liegen die Stromgestehungskosten an günstigen Standorten deutlich niedriger, und Windenergie liegt auch in Zeiten mit geringerer Sonneneinstrahlung vor. Eine Ergänzung zur Sonnenenergienutzung ist damit gegeben. Netzgekoppelte WKA´s in Österreich   Pnenn Nabenhöhe Niederösterreich: 1 Lagerwey 30/250 250 kW   1 Vestas V 29 225 kW 31 m 1 Enercon E 30 200 kW 50 m 1 Nordex N 27 150 kW 30 m 1 Seewind 22/110 110 kW 35 m 1 Fuhrländer 30 30 kW 27 m 2 Nordex N 29 250 kW 50 m 1 Enercon E 40 500 kW 50 m 1 Lagerwey LW 30 250 kW 40 m 1 Seewind 20/110, 110 kW 31 m 1 Vestas V 44 600 kW 63 m 1 Enercon E 30 200 kW 50 m 2 Enercon E 40 500 kW 65 m 1 Lagerwey LW 30 250 kW 40 m Oberösterreich 2 Enercon E-40 500 kW 49.5 m 3 Tacke TW 600 600 kW 50 m Salzburg: 1 LMW 10/7 10 kW 24 m Wien: 1 Seewind 22/110 110 kW 31.

2 m Gesamte in Österreich installierte Leistung: 7545 kW Quelle: Georg Kury Zentralanstalt für Meteorologie und Geodynamik Klimaabteilung Hohe Warte 38 1190 Wien E-mail: klidob@zaamus1.zamg.ac.at Photovoltaik In den letzten Jahren ist die Suche nach neuen erneuerbaren Energiequellen intensiviert worden. Viele der heute genutzten Energieträger belasten unsere Umwelt und sind in der Ergiebigkeit begrenzt. Die Nutzung erneuerbarer Energiequellen gewinnt zunehmend an Bedeutung.

Photovoltaik (PV), die direkte Umwandlung von Sonnenlicht i

Suchen artikel im kategorien
Schlüsselwort
  
Kategorien
  
  
   Zusammenfassung Der Vorleser

   sachtextanalyse

   interpretation zwist

   Fabel interpretation

   literarische charakteristik

   interpretation bender heimkehr

   felix lateinbuch

   interpretation der taucher von schiller

   textbeschreibung

   charakterisierung eduard selicke
Anmerkungen:

* Name:

* Email:

URL:


* Diskussion: (NO HTML)




| impressum | datenschutz

© Copyright Artikelpedia.com