Artikel pedia
| Home | Kontakt | Artikel einreichen | Oberseite 50 artikel | Oberseite 50 autors
 
 


Artikel kategorien
Letztes fugte hinzu
    Tiersex

   Erörterung: todesstrafe, pro oder contra

   Aggressionen und möglichkeiten zur aggressionsverminderung

   Körpersprache

   Behinderungen

   Jugenderziehung in der hitlerzeit

   Thema: verhalten

   Inkontinenz

   Sexueller mißbrauch bei jungen und mädchen

   Aggression

   Aggression

   Frühkindlicher autismus

   Depression

   Entstehung des begriffes schizophrenie und geschichtlicher rückblick

   Alkohol und der mensch
alle kategorien

  Rechenschwäche erkennen und behandeln von ingeborg milz

Rechenschwäche erkennen und behandeln von Ingeborg Milz   1. Neuropsychologische Voraussetzungen für Mathematisches Denken   mathematisches Denken setzt räumliches Vorstellen vorraus selbst die Grundrechenarten beanspruchen räumliches Vorstellen und Denken das mathematische Denken ist ein Endprodukt vieler neuropsychologischer Reifungsprozesse   Die Voraussetzungen für mathematisches Denken sind genetisch angelegt, aber das Lernen und Reifen ist notwendig, damit neuropsychologische Prozesse in Gang kommen. Die Wahrnehmung und Vorstellung des Raumes und alles was damit zusammenhäng ist Voraussetzung für mathematisches Denken. Aber gerade die Vorstellung des Raumes muß entwickelt werden, sie muß erlernt werden, sie ist nicht von Anfang an da.   2. Die Bedeutung der visuellen Wahrnehmung   Im folgenden soll Beispielhaft anhand des Frostig-Test die Bedeutung der visuellen Wahrnehmung, Elemente der visuellen Wahrnehmung in ihrer Bedeutung für Lern und Verhalten und damit auch für das mathematische Denken dargestellt werden.

Der Frostig-Test enthält fünf Untertests: visumotorische Koordination Figur-Grund-Unterscheidung Formkonstanz Beachtung Erkennen der Lage im Raum Erfassen räumlicher Beziehungen   2.1 Visumotorische Koordination - Zusammenspiel des Raumes und der Hände welches wie ein Entwicklungsprozeß behandelt wird der Saug und Greifreflex wird durch taktile Reize ausgelöst später kommt das Sehen dazu das Auge übernimmt die Führung und die Hände folgen ihm, davor war es umgekehrt à damit kommt es zur Koordination von Auge und Hand zur Bedeutung der Auge-Hand-Koordination: Auge und Hand bilden die Grundlage für visuelle Wahrnehmungen und auch die Grundlage zum Erfassen und begreifen mathematischer Prozesse Wenn ein Kind eine Menge erfassen soll, murß es vorher erst einmal die Gegenstände angefaßt und manipuliert haben, dazu gehört natürlich auch das in der Hand haben und das Sehen der Gegenstände 2.2 Figur-Grund-Unterscheidung es geht hierbei um das herausheben einer Gestalt von ihrer Umgebung, um das Erkennen einer Figur vor ihrem Hintergrund es ist die elementare Voraussetzung aller Wahrnehmungen es versteht sich deshalb von selbst, das Auge und Hand nur das erfassen und ergreifen kann, was sich von der Umgebung abhebt wird beansprucht beim erkennen von Ziffern, in der Anordnung mehrstelliger Zahlen, den Stellenwerten, und bei Begriffen wie „zwischen“ in der Schule muß der Schüler den Anschrieb an der Tafel herausdifferenziehren kann und sich bei dem Umstellen auf das Heft oder der Buchseite auch dort zurechtfindet 2.3 Formkonstanz Formen als Konstanz zu erkennen auch wenn sie unterschiedliche Positionen einnehmen (drehen: Beispiel Kreis, beim „kippen“ sieht man ihn als Strich) setzt die vorangegangenen Aspekte voraus Es ist wichtig, das die Form in ihrer eigenheit erkannt werden Konstanzfenumän, Mengenkonstanz, Formkonstanz, Zeitkonstanz, Formkonstanz hängen so eng zusammen, daß wenn bei einem eine Beeinträchtigung stattfindet, können die anderen ebenfalls betroffen sein 2.4 Lage im Raum hat das Kind die groben Richtungen (vorne hinten, oben unten) erlernt, dann hat es feste Bezugsgrößen für die dreidimensionale Lage im Raum, für das schulische Lernen muß es die Daten transformieren, einmal auf den zweidimensionalen Raum vertikal und zum anderen für den zweidimensionalen Raum im Heft horizontal derartige Umstellungen können Schwierigkeiten hervorrufen 2.5 Beziehungen im Raum nur wenn das Kind über eine stabile Raumerfahrung verfügt, können auch Objekte im dreidimensionalen Raum stabilisiert wargenommen und in Beziehung zueinander gesetzt werden Bsp: Zahlenstrahl, wo bei der Addition nach rechts und bei der Subtraktion nach links gearbeitet wird Oder die Sprache: Bsp: zweistellige Zahl (21) ich sage erst die Zahl 1 und dann die Zahl 20)   Wie sollte nun in der Grundschule an einem mathematische Problem herangegangen werden? 3 Verinnerlichungsstufen   das konkrete Handeln mit Gegenständen (Stäben, Plätchen oder ähnlichem didaktischem Material) anschauliche und praktische Fähigkeiten werden gefördert Auge-Hand-Koordination Probleme können durch gestörte Vorstellung zur räumliche Beziehungen auftreten (Figur-Grund-Unterscheidung) oder durch visuelle Wahrnehmungen Hier wird der Grund gelegt für alle weiteren mathematischen Denkprozesse Die Zahl muß als Menge verstanden werden (z.

B.: 4 gleich mit vier Fingern zeigen und nicht abzählen lassen!) Kinder mit Rechenschwächen haben hier schon Verzögerungen und es treten Irrtümer auf(Therapie: Ball an die Wand spielen ) bildliche Dartsellung mit grafischen Zeichen und Markierungshilfen - erkennen des Zeichen(+) und das Wissen darüber, was getan werden muß Darstellung und Umsetzung mathematischer Operationen mit Hilfe von Ziffern und Zeichen Automatisierung und Anwendung mathematischer Operationen -Kein Auswendiglernen!     Erreicht wird dies durch sorgfältig geplantem Unterricht Gilt als Raster für die Umsetzung In diesen Stufen können sich Störungen bei einigen Kinder ergeben    

Suchen artikel im kategorien
Schlüsselwort
  
Kategorien
  
  
   Zusammenfassung Der Vorleser
   sachtextanalyse

   interpretation zwist

   Fabel interpretation

   literarische charakteristik

   interpretation bender heimkehr

   felix lateinbuch

   interpretation der taucher von schiller

   textbeschreibung

   charakterisierung eduard selicke
Anmerkungen:

* Name:

* Email:

URL:


* Diskussion: (NO HTML)




| impressum | datenschutz

© Copyright Artikelpedia.com